Monte Carlo Dissertation

Candidate Number: 265113
May 2025

Q1

Introduction

The goal of this part is to generate random numbers following the given proba-
bility density function (PDF). Then compare the generated distribution to the
theoretical distribution and estimate F(]X]) using importance sampling.

Description of PDF

We are given a probability distribution function defined as:

—a—1
o k,—,u—i—m) @ T >

sy = R (=) ez o (1)
0, otherwise

The distribution is characterised by 3 variables:

e « (shape parameter): The shape parameter controls the heaviness of the
tail with lower values giving a heavier tail.

e [(scale parameter): The scale parameter stretches the distribution.

e i (location parameter): The location parameter shifts the distribution
along the x-axis and gives the distribution its lower bound.

The distribution is defined for € [p, o0]. It is a monotonically decreasing
function decreasing smoothly for — oo and it behaves like a power law f(x)
£~*~!. The distribution is therefore right skewed, meaning it has a long tail to
the right.

To ensure that the expectation value FE(|X|) and Variance Var(X) of the
random variable X exist and is finite, we need to impose a constraint on a.
According to the lecture notes (Section 2.6), the expectation value exists if the
integral [z f(z)dz converges. For the probability distribution function given
the expectation value is defined and finite when « > 1. This is shown from,

o k
E[X]:/ zf(x)de = p+ —— fora > 1. (2)
u a—1
From the lecture note the variance of X is defined as,
Var(X) = E[(X — E(X))?] = B(X?) — (B(X))?, (3)
the convergence exist if the integral [2?f(z)dz converges and thus:

k2
IO
Therefore, we selected our variables a = 3, k = 2, and p = 1, which ensured
that the expectation value and variance were finite.

Var(X for a > 2. (4)

I chose the inverse transform method to generate random numbers dis-
tributed according to the given distribution because the cumulative distribution
function (CDF) of the target distribution was mathematically invertible allow-
ing me to directly sample from the target distribution. This removed the need
to use a proposal distribution or apply weights. In addition to this, the inverse
transform method is efficient because the generated samples follow the exact
shape of the target distribution.

The inverse transform method is a fundamental method for generating ran-
dom samples for a probability distribution function using uniform random num-
bers. As explained in the lecture notes (Section 3.3), the method consists of
generating a random variable U ~ Uniform(0,1). This variable is then passed
into the inverse of the CDF to produce a sample from the desired distribution.

For a continuous random variable X with PDF f(x), the CDF F(x) is given,
as seen in the lecture notes (Section 2.3) by:

) =Px <) = [s (5)
and thus the inverse CDF is given by:

Fa)=P(X<a) = [j)ar (6)
If the PDF has a lower bound a, the forn_nja simplifies to:

F(z) = /m f(@")dz', for x> a. (7)
With the definition of the CDF given in Equation 7 we can define the CDF:

T - 7\ a—1 _ -«
P = [(A e (B T ez
1

Therefore, the derived CDF and the inverse CDF is given by:

[0, T < 0
(z) = 1_(k_,]:+$)—@7 - 9)
Flu)=k(1—u) ™Y —k +p. (10)

Histogram and Theoretical Curve Comparison

The inverse CDF was defined in R and used to generate random samples of sizes
100, 500, 1000, 5000, 7500 and 10,000 for our analysis. A histogram for each
sample was plotted alongside the theoretical density function. The histogram
and the theoretical density function showed a strong agreement as the sample
size increased with both the shape and the tail behaviour matching closely,
demonstrating the convergence property of the empirical distribution to the
theoretical distribution.

Generated Samples + PDF (n=100)

o _
o
> =
i)
C
[
[a)
le}
L
o I
o
I T T T T 1
1 2 3 4 5 6
samples

Figure 1: Histogram of 100 samples generated using inverse transform sampling
overlaid with the theoretical probability density function (PDF) in red. The
accuracy of the sampling method is demonstrated by the close alignment of the

histogram and the PDF.

Generated Samples + PDF (n=500)

©
Q4
2 < |
2 o
©
]
N
N
o
2 -
T T T T 1
0 10 20 30 40
samples

Figure 2: Histogram of 500 samples generated using inverse transform sampling
overlaid with the theoretical probability density function (PDF) in red. The
accuracy of the sampling method is demonstrated by the close alignment of the
histogram and the PDF.

Generated Samples + PDF (n = 1000)

1.0

0.8

Density
0.6

0.4

0.2
|

T T T I
5 10 15 20

samples

Figure 3: Histogram of 1,000 samples generated using inverse transform sam-
pling overlaid with the theoretical probability density function (PDF) in red.
The accuracy of the sampling method is demonstrated by the close alignment
of the histogram and the PDF.

Generated Samples + PDF (n =5000)

1.0

0.8

Density
0.4

0.2

T T T T T T T 1
0 5 10 15 20 25 30 35

samples

Figure 4: Histogram of 5,000 samples generated using inverse transform sam-
pling overlaid with the theoretical probability density function (PDF) in red.
The accuracy of the sampling method is demonstrated by the close alignment
of the histogram and the PDF.

Generated Samples + PDF (n=7500)

Density
02 03 04 05 06 0.7

0.0 0.1

T T T 1
0 10 20 30

samples

Figure 5: Histogram of 7,500 samples generated using inverse transform sam-
pling overlaid with the theoretical probability density function (PDF) in red.
The accuracy of the sampling method is demonstrated by the close alignment
of the histogram and the PDF.

Generated Samples + PDF (n=10000)

1.0

0.8

Density
0.4

0.2

T T T T T T T 1
0 5 10 15 20 25 30 35

samples

Figure 6: Histogram of 10,000 samples generated using inverse transform sam-
pling overlaid with the theoretical probability density function (PDF) in red.
The accuracy of the sampling method is demonstrated by the close alignment
of the histogram and the PDF.

Goodness of Fit

To assess the agreement of the histogram and theoretical density function quan-
titatively we used the Kolmogorov-Smirnov (KS) test, comparing the empiri-
cal cumulative distribution function (ECDF) of the sample and the theoretical
CDF, for each of our sample sizes. The KS test returns two results: D-statistic,
which is a measure of the maximum vertical distance from the two distributions
and the p-value.

As expected, the D-statistic decreases with increasing sample size indicating
improved agreements with the with the theoretical distribution. The calculated
p-value’s for low sample sizes, such as sample sizes: 100 and 500, were low
suggesting that the ECDF did not agree with the theoretical CDF. However,
as the sample increased the p-value approached 1 suggesting that the ECDF
compared well to the theoretical CDF. This is also consistent with expectation,
as seen in the lecture notes (Section 8), stating that increasing the sample size
improves the alignment of empirical results with theoretical expectations.

Importance Sampling

Using importance sampling, I estimated the expected value using the definition
form the lecture notes,

=

E(1X]) ~ Z

Ile (11)

found in Section 2.6. The expectation value was obtained for each sample size
and the weights were computed as:

f(z3)
w(x;) = . 12
Here, for the proposed suitable function g(z;), where g(z;) > 0 for almost
all x when f(x;) > 0, I picked the shifted exponential function given by:

N-e Ae=m) g >y,
z) = ’ - , 13
9(x) {O, otherwise (13)

where I defined 4 = 1 and A = 0.5. The expectation value converged for
increasing sample sizes to E(]X|) ~ 3.9. Which visually looks consistent with
our right skewed distribution. The estimate stabilised as I increased the sample
size, shown in Figure 7, indicating that the chosen proposal distribution g(z;)
was accurate.

10

Convergence of Importance Sampling Estimate

4.00
]

3.95
L

Estimate of E[|X|]
3.90
|
N\

I I I I I I
0 2000 4000 6000 8000 10000

Sample Size (n)

Figure 7: Convergence of Importance sampling showing for increasing sample
sizes the expectation value converges to E(|X]) = 3.9.

Q2
Why Markov Chains Monte Carlo Algorithms Work

Markov Chain Monte Carlo (MCMC) algorithms work by constructing a Markov
chain that, if run long enough, the proportion of time spent in each state matches
the target distribution. A Markov chain is a discrete time stochastic process in
which the probability to transition to next state of the system X;.; depends
only on the current state X; not the previous states. This property of Markov
chains, as seen in Section 5.1 of the lecture notes, is known as the Markov prop-
erty. The evolution of a Markov chain is defined by a transition matrix. A
transition matrix is a square matrix that encodes the probability of moving be-
tween states in a Markov chain. Each element of the transition matrix, denoted
as p; ;, represent the probability of moving from state ¢ to state j, where each
row sums to one so that it represent a valid probability distribution. The key
theorem of Markov chains are that an irreducible and aperiodic chain converges
to a single unique stationary distribution, regardless of the starting state, given
a long enough run time. This allows us to estimate quantities using the empir-
ical average of the samples. This shows why MCMC methods are effective for
sampling from complex distribution that would otherwise be too complex work
with.

11

Irreducibility and Aperiodicity

A Markov chain is irreducible if every state communicates which means that
every state is accessible from any other state. Formally, stated in the lecture
notes (Definition 5.1.3), for any pair i,j € S, where S is a finite or countably
infinite state space, there exist an integer k > 1, the number of steps, such that
pﬁ ;> 0. To test if the Markov chain was irreducible, I defined reach_matriz, to
represent the cumulative probabilities of reaching any state from state 1 in one
step. For an irreducible Markov chain it is expect that this matrix is non zero
everywhere. Therefore, by repeated calculation of the probabilities of reaching
any other state from the current state and cumulatively adding them to the
reach_matrix, after 100 steps we checked if every element of reach_matrix was
non-zero concluding if the Markov chain was irreducible.

A irreducible Markov chain is aperiodic if the period of every state is 1,
meaning the chain doesn’t get trapped in a fixed cycle of transitions. To test
that a Markov chain is aperiodic, I simulated a Markov chain starting from each
state ¢ for 100 steps. In an array return_steps, I recorded the step k for each
step there was a non-zero probability of returning to the initial state. Then I
calculated the period of state i, as seen in the lecture notes (Section 5.1.4), by
computing the greatest common devisor of the return_steps array.

With the transition matrix given, it was found that the Markov chain was
irreducible and aperiodic as every element in the defined reach_matriz was non
zero and the period was 1 for every state.

Calculation of the Invariant Distribution (Stationary Dis-
tribution)

An invariant distribution or stationary distribution given by 7 is a probability
distribution that doesn’t change as the Markov chain evolves. The stationary
distribution is important for understanding the long-term behaviour of a Markov
chain as for increase number of steps the Markov chain converges to the invariant
distribution. The stationary distribution can be defined with the equation in
matrix notation found in the lecture notes (Section 5.4.3):

sP=n = Pzl =7T (14)

This equation defines the invariant distribution as the left-eigenvector of the
transition matrix P with eigenvalue 1. In R , T implemented the equation 7P =
7w and obtained the invariant distribution for the probability matrix provided.
The steps for this proccess are detailed as:

e Transpose the transition matrix P
e Compute the eigenvectors 7

e Get the eigenvector with an eigenvalue of 1

12

e Normalise the eigenvector

The obtained invariant distribution can be found in Table 1.

State 1 2 3 4 5
Invariant Distribution 0.1908 0.2014 0.2397 0.1117 0.2564

Table 1: Invariant distribution of the Markov chain across states 1 to 5

Empirical Distribution Calculation

To simulate a random walk of a Markov chain, I defined a starting state and
repeatedly sampled, for n steps, the next state based on the transition proba-
bility given by the transition matrix. At each step, I recorded the state that
was visited, allowing me to count how often each state was visited during the
random walk. By normalising the number of times each state was visited I cal-
culated the empirical distribution of the chain. As stated in the ergodic theorem
given in the lecture notes (Section 5.4.4), if the Markov chain is irreducible, the
empirical distribution should converge to the invariant distribution as n is in-
creased. I simulated the Markov chain for n = 1000 allowing me to compare the
empirical distribution with the theoretical invariant distribution found earlier.

Comparison of Theoretical and Empirical Distribution

The bar chart compares the theoretical distribution with the obtained empirical
distribution from simulation of the Markov chain for 1000 steps. The red bars
represent the probabilities of each state for the invariant distribution calculated
using the eigenvector method, whereas the blue bar represent the empirical
distribution recovered from simulating a Markov chain for n = 1000 steps.
Overall, the empirical distribution matches the theoretical invariant distribution
closely, with only minor deviations present. The small deviations from the
theoretical distribution is expected due to the randomness present with a finite
number of samples. As n is increase the empirical distribution is expected to
converge even more closely with the invariant distribution, as predicted by the
ergodic theorem, shown in the lecture notes (Section 5.4.4). This bar chart
demonstrates that the correctness of my the simulation and that the Markov
chain is approaching its long-run behaviour.

13

Comparison of Theoretical and Empirical Distribution

0.25
|

B Theoretical
B Empirical

0.20
|

0.05
L

0.00
L

State 1 State 2 State 3 State 4 State 5

Figure 8: Comparison of the empirical distribution (blue) obtained from simula-
tion the Markov chain with the theoretical invariant distribution (red) obtained
from the eigenvector method.

14

Q3 — Monte Carlo Method for Solving Leplace
and Poisson Equations

Introduction

For this part of the project, I selected the 1D parallel-plate capacitor simu-
lation from the research paper “Monte Carlo Methods for Solving the Poisson
and Laplace Equations” by Ankur Sonawane. The paper investigates how ran-
dom walk-based Monte Carlo methods can be applied to solve classical PDEs
such as Laplace’s and Poisson’s equations in 1D and 2D electrostatic systems.
Among the several applications presented, I focused on the 1D parallel plate
capacitor governed by the Laplace equation because of it’s simplicity, clarity,
and direct relevance to the methods studied in this module.

Monte Carlo Method Solution to the Poisson and Leplace
Equations

This is done by simulating a random walk, w, on a lattice grid that discretises the
domain 2. Each random walk models a discrete approximation to the diffusion
process governed by the Laplace operator.

This method relies on the interpretation that the solutions of ¢(A), where
A € Q, correspond to,

P(A) = > g(a)- Pa(a)— Y F(w). (15)
a€all boundary points for all w
Here I have defined: g(a) the value of the boundary condition at boundary
point a; P4(a) which is the probability of the random walk starting at A to end
at a, given by,
Number of times random walk ends at a
Py(a) = / N . (16)

and F(w), the sum of the contribution from the source function f(i) along
the path scaled by h? as,

F(w) = > f(i) - h2. (17)

i€interior points in random walk

However, I cannot compute,

Y Flw), (18)

for all w

because there are infinitely many paths. Therefore, I approximate it by take
the sample average given by:

1 i
~ ZF(w(). (19)

Substituting this into Equation 15, gives the approximation for the potential

o(4),
$(A) = > 9(a) Pala) - Y F(w?), (20)

a€boundary points i=1

Implementation in R

To evaluate the effectiveness of the Monte Carlo Method in solving the Laplace
equation for a one-dimensional parallel plate capacitor, I simulated the electric
potential between two plates separated by 0.1m, with the boundary conditions
set to OV and 5V, respectively. The analytical solution for this setup is known
to be linear, given by:

5
= ﬁz7

where e is the electric potential. To approximate this numerically, a
standard fixed-step random walk Monte Carlo method is used to estimate the
potential at each interior point A on the lattice. The domain €2 was discretised
into a grid of N, lattice points between x = 0 and = 0.1. Because there is no
source of charge between the plates our source function f(i) = 0 for all lattice
points i.

The key idea is that the potential at any interior point is the expected value
of the boundary condition reached by a random walk starting from that point.
The algorithm proceeds as follows:

For each interior point on the grid:

(21)

Utrue (I)

e A fixed number of random walks (N) are initiated.
e At each step, the walk moves left or right with equal probability.

e When the walk reaches either boundary, it stops, and the boundary voltage
(0 or 5 V) is recorded.

e The average of these voltages over all walks gives the estimated potential
at that point.

This method was implemented in a function called solve_poisson-mc_-1d(),
which accepts:

e N,: number of lattice points (grid resolution)
e N: number of random walks per point
e f(i): source function (set to 0 for Laplace)

The implementation supports flexible resolution and sampling parameters,
allowing for experimentation with error analysis. The analytical solution was
also computed for comparison using the known linear formula, and used as a
reference to calculate errors (absolute, mean, and total).

16

To evaluate convergence and accuracy, I performed simulations across a
range of values for:

e P: number of random walks per point

e N,: number of lattice points

The results were summarised using plots and error metrics, total absolute
error vs. random walks (10), total error vs. Number of Lattice points (Figure
11), and used to analyse the efficiency and limitations of the method.

Simulation Results and Analysis
a) Potential vs Distance from Negative Plate

The first experiment aimed to verify whether the Monte Carlo method could
accurately reproduce the expected linear potential profile between two plates
held at 0V and 5V. A total of N, = 15 lattice points were used, with 400
random walks per interior point.

Figure 9 shows the estimated potential (blue) using the Monte Carlo method
compared to the exact linear solution (dashed red). To quantify the approxima-
tion accuracy, I computed the absolute error between the Monte Carlo solution
Ume(2) and the analytical solution uyue(2). The error at each point is defined
as:

6(.2?) = |umc(x) - Utrue(l‘)' . (22)

The mean absolute error (MAE) and root mean squared error (RMSE) were
computed to summarise the performance. They showed that the approximation
of the linear potential profile between two plate using the Monte Carlo method
fit the true linear potential expected well. My results matched closely with the
result achieved in the paper demonstrating the correctness of my R implemen-
tation with any variation plausibly due to random fluctuation inherent from the
random nature of Monte Carlo methods.

b) Total Absolute Error vs Number of Random Walks

I then investigated the MAE dependence on the number of random walks, vary-
ing the number of random walks N from 10 to 1000 in increments of 20 keeping
the number of lattice points constant, N, = 15. For each value of IV, the total
absolute error was calculated as the sum of the absolute differences between the
Monte Carlo estimate and the analytical solution across all interior points.
The resulting curve, shown in Figure 10, shows a clear inverse relation-
ship between error and the number of walks. Initially, the error drops rapidly
with increasing N, indicating fast convergence as more samples are averaged.
Demonstrating the stochastic convergence property of Monte Carlo Method, as
expected from Monte Carlo theory, the error decreases at a rate proportional

17

to ﬁ However, after N = 400 the curve flattens, reflecting diminishing re-
turns. Further increasing N results in smaller incremental improvements. This
matches the results found in the paper closely showing correct implementation
of the Monte Carlo method.

c) Total Absolute Error vs Number of Lattice Points

The final plot (Figure 11) shows the effect of grid refinement by varying the
number of lattice points N, while keeping the number of random walks per
point constant. At first glance, one might expect the error to decrease with
a finer discretization. However, the results show that the total absolute error
increases as N, increases.

This apparent contradiction is explained, as discussed in the lectures, in-
creasing the number of evaluation points in Monte Carlo methods improves
spatial resolution but introduces more stochastic noise unless the number of
samples per point is also increased. This result aligns with the findings in Son-
awane’s paper and emphasizes the importance of scaling the number of random
walks with resolution.

Plots

Total Absolute Error vs Number of Lattice Points

<
o
12}
=
S
2
=2
g‘—
i}
e
S 2 4
S <
e
<
<
s
S
= o |
S
o

I I T I I I
5 10 15 20 25 30

Number of Lattice Points

Figure 9: Potential in volts vs distance from negative plate. The figure shows
the estimated potential (blue) using the Monte Carlo method with 15 lattice
points compared to the exact linear solution (dashed red) between 2 parallel
plate with a separation of 0.1m

18

Total Absolute Error vs Number of Random Walks

o
—

12}

=

o

S ©

2

-

[e]

£

L

E

3 Y7

[72]

Qo

2

)

=

]

- w

I I I I I I
0 200 400 600 800 1000

Number of Random Walks

Figure 10: Total absolute error in volts vs the number of random walks for our
simulation with 15 lattice points. Initially, the error drops rapidly with increas-
ing N, indicating fast convergence as more samples are averaged. Demonstrating
the stochastic convergence property of Monte Carlo Method.

19

Total Absolute Error vs Number of Lattice Points

<
o
12
=
S
2
P
s -
i
E
S 2 4
[oR—
Q
<
<
&
S
= o
< |
o

I I T I I I
5 10 15 20 25 30

Number of Lattice Points

Figure 11: Total absolute error in volts vs the number of lattice points for
our simulation with 400 steps per walk. The error increases for higher lattice
resolution.

20

